Replication protein A as a "fidelity clamp" for DNA polymerase alpha.
نویسندگان
چکیده
The current view of DNA replication in eukaryotes predicts that DNA polymerase alpha (pol alpha)-primase synthesizes the first 10-ribonucleotide-long RNA primer on the leading strand and at the beginning of each Okazaki fragment on the lagging strand. Subsequently, pol alpha elongates such an RNA primer by incorporating about 20 deoxynucleotides. pol alpha displays a low processivity and, because of the lack of an intrinsic or associated 3'--> 5' exonuclease activity, it is more error-prone than other replicative pols. Synthesis of the RNA/DNA primer catalyzed by pol alpha-primase is a critical step in the initiation of DNA synthesis, but little is known about the role of the DNA replication accessory proteins in its regulation. In this paper we provide evidences that the single-stranded DNA-binding protein, replication protein A (RP-A), acts as an auxiliary factor for pol alpha playing a dual role: (i) it stabilizes the pol alpha/primer complex, thus acting as a pol clamp; and (ii) it significantly reduces the misincorporation efficiency by pol alpha. Based on these results, we propose a hypothetical model in which RP-A is involved in the regulation of the early events of DNA synthesis by acting as a "fidelity clamp" for pol alpha.
منابع مشابه
Fidelity of eucaryotic DNA polymerase delta holoenzyme from Schizosaccharomyces pombe.
The fidelity of Schizosaccharomyces pombe DNA polymerase delta was measured in the presence or absence of its processivity subunits, proliferating cell nuclear antigen (PCNA) sliding clamp and replication factor C (RFC) clamp-loading complex, using a synthetic 30-mer primer/100-mer template. Synthesis by pol delta alone was distributive. Processive synthesis occurred in the presence of PCNA, RF...
متن کاملProcessivity clamp gp45 and ssDNA-binding-protein gp32 modulate the fidelity of bacteriophage RB69 DNA polymerase in a sequence-specific manner, sometimes enhancing and sometimes compromising accuracy.
Numerous studies of the impact of accessory proteins upon the fidelity of DNA synthesis have provided a complex and sometimes discordant picture. We previously described such an analysis conducted in vitro using various bacteriophage RB69 gp43 mutator DNA polymerases with or without the accessory proteins gp32 (which binds single-stranded DNA) plus gp45/44/62 (processivity clamp and its loaders...
متن کاملCharacterization of a coupled DNA replication and translesion synthesis polymerase supraholoenzyme from archaea
The ability of the replisome to seamlessly coordinate both high fidelity and translesion DNA synthesis requires a means to regulate recruitment and binding of enzymes from solution. Co-occupancy of multiple DNA polymerases within the replisome has been observed primarily in bacteria and is regulated by posttranslational modifications in eukaryotes, and both cases are coordinated by the processi...
متن کاملThe Escherichia coli dnaN159 mutant displays altered DNA polymerase usage and chronic SOS induction.
The Escherichia coli beta sliding clamp, which is encoded by the dnaN gene, is reported to interact with a variety of proteins involved in different aspects of DNA metabolism. Recent findings indicate that many of these partner proteins interact with a common surface on the beta clamp, suggesting that competition between these partners for binding to the clamp might help to coordinate both the ...
متن کاملReconstitution of recombination-associated DNA synthesis with human proteins
The repair of DNA breaks by homologous recombination is a high-fidelity process, necessary for the maintenance of genome integrity. Thus, DNA synthesis associated with recombinational repair must be largely error-free. In this report, we show that human DNA polymerase delta (δ) is capable of robust DNA synthesis at RAD51-mediated recombination intermediates dependent on the processivity clamp P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 276 21 شماره
صفحات -
تاریخ انتشار 2001